UCRL-JC-104063
PREPRINT

R
M
-

i

o

% [.
£ o ., L]
‘ww;“r" ST P

OBTAINING GIGAFLOP PERFORMANCE FROM
PARTICLE SIMULATION OF PLASMAS

David V. Anderson, Bruce C. Curtis, Dana E. Shumaker
University of California
Lawrence Livermore National Laboratory
Livermore, CA

This paper was prepared for the
Proceedin%s of the Fifth International Symposium on
Science & Engineering on Cray Researrch Computers

October 22-24, 1990 London, England

June 1990

: Thisisa preprintofapaperintended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represenits that
its use would not infringe privately owned rights. Reference herein to any
specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

OBTAINING GIGAFLOP PERFORMANCE FROM
PARTICLE SIMULATION OF PLASMAS

David V. Anderson, Bruce C. Curtis, Dana E. Shumaker

National Energy Research Supercomputer Center
Lawrence Livermore National Laboratory
Livermore, California 94550 USA

Eric J. Horowitz

Computer Sciences Corporation, Baltimore Maryland USA

ABSTRACT

In the numerical simulation of plasma phenomena there are two fundamen-
tal approaches that are generally followed. In the continuum approach one
models the evolution of the fluid moment equations derived from the ap-
propriate Boltzmann equation of the plasma. Alternatively, in the particle
approach a large group of simulated charged particles are moved accord-
ing to the self-consistent electromagnetic fields which partly depend on the
charge and current densities of these same particles. Although the particle
simulation method has been traditionally the more expensive of the two,
it is much more capable of giving adequate account of many important
kinetic phenomena. With the advent of vector multiprocessor supercom-
puters, such as the Cray-2 or Cray Y-MP, we have learned to adapt particle
simulation codes to exploit the parallel features of these machines. Yet,
in spite of such developments, the particle simulation codes have remained
much slower than the maximum machine speeds. We have investigated new
techniques that further optimize these methods to bring the speeds of these
particle simulations into the gigaflop range. Recent progress in this area
suggests that the use of particle simulation methods will become compet-
itive with the alternative fluid models especially when it is realized that
gigaflop performance makes them much more affordable.

INTRODUCTION

Perhaps the simplest and most general methodology for simulating the be-
havior of plasmas is to follow the charged particles in their self-consistent
electromagnetic fields.[1,2,3] To do this, one solves the coupled Newton-
Maxwell equations for the modeled problem. Though straightforward, this
approach is very intensive computationally both in regard to storage and
time requirements. Thus, historically, most models of plasmas have em-
ployed a fluid representation inorder to make the calculations affordable.
These particle simulation models are employed in the studies of astro-
physics, particle accelerators, solid state physics, molecular dynamics, as

well as plasma physics. In this paper we try to show how these particle
codes can be made to run more efficiently on some contemporary shared
memory supercomputers, to make them competitive with fluid codes.

A typical particle code is executed in four phases:

1. Interpolate the electromagnetic fields from the grid to the par-
ticle positions (field interpolation)

2. Using these fields, push particles by advancing positions and
velocities according to Newton’s law (push)

3. Interpolate from particles to deposit charge and current densi-
ties on the grid (deposition interpolation)

4. Solve the Maxwell field equations on the grid (solﬁe)

In many particle codes the majority of the time is spent in the first three
phases. Even when the solution of the field equations is most time consum-
ing, we will assume that this phase can be straighforwardly optimized by
standard techniques. In this paper we wish to emphasize the methods for
the optimization of the first three phases, because we believe it holds the
key to obtaining performance in the gigaflop range.

Vector Parallel Algorithms in QN3D

Prior to 1985 most particle codes were only partially vectorized, partly
because the machines available had limited vector hardware and partly be-
cause the algorithms were not well developed. A notable exception to this
was the work of Buneman et al[4] who wrote highly optimized particle codes
in Cal assembly language for the Cray-1 computer. This situation began to
change with the introduction of vector multiprocessor machines such as the
Cray X-MP, Cray-2, Cray Y-MP, as well as some of Japanese manufacture.
In the past few years, nearly all of the restrictions on vectorization and mul-
titasking have been removed. The hybrid particle code QN3D, with fluid
electrons and particle ions, pioneered several of these developments(5] and
was fully parallelized. “Parallelized” denotes the simultaneous use of both
vectorization and multitasking.

The first phase of the time step, as indicated in the list above, requires
the interpolation of the fields, known on the mesh, to the particle posi-
tions. Since the particles, stored in so-called particle tables, tend to become
randomly distributed in space, it follows that the fields used to move the
particles must be accessed randomly from the computer memory. In terms
of the written algorithm this is expressed in terms of an indirect index struc-
ture, such as EX(I(N)). This structure, which frustrated vectorization on
the earlier vector computers, may now be indirectly vectorized on many of
the newer vector computers by operations known as the “gather” or the
“scatter.” The gather mechanism is used to load memory items into the
CPU while the related scatter operation is used to store into the memory
from the CPU. QN3D employed the gather procedure to allow vectorization

and used multitasking to carry out the field interpolation phase. It is crucial
to note that this form of indirect vectorization is considerably slower, on the
Cray-2, than normal direct vectorization of constant stride arrays; at best
the gather operation can run at one fourth the normal vector speed. Its
speed is usually worse than that because random access of memory tends
to be slowed by memory bank and quadrant conflicts. But, in most cases,
it is still faster than scalar coding.

During the next phase, the particle push, the orbits are all independent
and thus trivially parallelized.

The third phase is a more complicated interpolation than used in the
first phase and requires both a gather and a scatter operation to perform
the deposition of charge and current density contributions from the vari-
ous particles. There is a possible recursion in this step because different
particles may try to increment the same mesh location simultaneously; con-
sequently this aspect prevented vectorization and multitasking. One remedy
to this problem, employed in QN3D[6], was to break the deposition phase
into several sub-phases each of which accumulated the densities from a cor-
responding subgroup of particles. By choosing each subgroup such that no
two particles occupied the same mesh cell it then became impossible for
conflicts to occur. QN3D used both vectorization and multitasking within
each sub-phase to parallelize the deposition interpolation.

In the last phase of QN3D we solve an approximate form of Maxwell’s
equations. Since we are trying to limit the scope of this paper to the issues
of speeding up the other three phases of the calculation, we shall not discuss
the field solver here.

Other workers have also been exploring similar ideas for optimizing the
speeds of particle codes. For example, Heron and Adam(7] have developed a
deposition algorithm which is organized such that most of the loops employ
direct vectorization, thereby reducing some of the overhead of gather-scatter
forms of vectorization.

Optimizing the Interpolation Phases in STORM

QN3D, though fully vectorized and multitasked was about 40 times slower
than the peak speeds of a Cray-2. The deposition interpolation phase was
the slowest of the four phases. Thus, in 1989, a new version of QN3D
was developed that employed a different deposition technique in hopes of
optimizing the deposition interpolation phase. It also had a new field solver
and added a hybrid fluid component for one species of ions in the model. The
code was renamed STORM, as it was quite different from its predecessor.
We have built a special version of it which we have dubbed SQAL for the
purpose of conducting studies into optimization in the Cray-2 environment.

Organization of this Paper

We begin by developing alternative techniques that allow a vector-parallel
treatment and at the same time avoid the slower gather- scatter operations
entirely. Some indirect indexing is still there, but it is in the outer loops.

Then we discuss a particle ordering scheme and show how it might allow us
to get higher performance in our present computing environment and how
it might extend into parallel computing environments.

The structure of this paper is as follows: We begin in Section 2 with
a discussion of strategies for high performance and then in Section 3 we
give concrete examples of implementing some of these ideas in the SQAL
code. We propose other techniques to be tested in Section 4. In Section
5 we conclude with a discussion about how we expect to achieve gigaflop
performance in our present computing environment.

STRATEGIES FOR HIGH PERFORMANCE

As stated above, the major obstacle to good performance in a particle code
is the tendency for the particles to be randomly located in space which
leads to the use of indirect indexing and which can lead to slowly executing
code. That is, the CPU’s idle most of the time while they wait for the
memory accesses to complete. This is a critical issue for the Cray-2 and less
important for the Cray Y-MP. And it may be important for the Cray-3. If
the speed of accessing memory can be increased, there is the prospect of
keeping the CPU’s busy. Until we do that, it makes little sense to optimize
the arithmetical aspects.

Our first objective in making these codes more efficient is to eliminate
the use of gather-scatter vectorization by replacing it with direct vectoriza-
tion (in which the stride is uniform.) We then develop efficient methods
for accessing memory. Later, we shall consider a scheme that orders the
particles by position.

SQAL EVOLUTION

A test code, dubbed SQAL, was built from the STORM code to allow us
to test the various optimization ideas. The first version of SQAL stored
the field arrays and deposition arrays such that each field component was
stored in a separate 3D storage block. They were stored with what is known
as natural ordering such that incrementing the index in the z direction
corresponds to unit stride access of the memory.

Field Interpolations with Interleaving
For linear interpolations to a particle position, in the field interpolation
phase, we must access the fields at the 8 surrounding grid vertices. These
can be loaded from memory as 4 short vectors each of length 2. Very little
improvement in speed can be obtained from the use of such short vectors.
We can improve the situation considerably by processing the particles
64 at a time and by using an interleaved storage scheme. What we do is
store the fields such that their ordering in memory is

EX(N),EY(N),EZ(N),BX(N),BY(N),BZ(N),EX(N+1),..

such that twelve grid quantities are stored contiguously as we move from
one grid vertex to the next one in the z coordinate. Here, N is taken to
represent the grid offset index, which essentially labels the grid points using
“normal” ordering (the z index turning fastest.) When we load this vector,
of length 12, from memory we can potentially achieve good performance
in direct vectorization mode which should outperform the gather-scatter
modes used earlier. These field variables are then stored in a temporary
field array FAVL(LCT,IVX,NL) where NL ranges over 64 particles per pass,
IVX ranges over the 8 vertices of the enclosed grid cell, and LCT ranges
over the 6 different field components.

Even with the various optimizations done in Fortran to get good per-
formance, we found that the performance of the field interpolation was only
about 23% faster than the original STORM This relates to the fact that our
vectors are relatively short making the loop overhead rather expensive. Ta-
ble 1. shows the various measured access rates compared to the theoretical
maximum rates. The column labelled SQALO6 gives the speeds achieved
using Fortran coding for the loading of the field quantities; later on we shall
discuss the version SQALOS8 that uses assembly coding and local memory to
perform the loading. In Fortran our actual access rate of roughly 45 mega-
words per second is about 21 percent of the theoretical maximum rate of
almost one access every clock period. The speeds of these versions of SQAL
are shown in Table 2. If we assume that the access speed labelled IDEAL
could be achieved, then the Field Interpolation speed of 59 MFLOPS would
increase to about 106 MFLOPS. Even then, we do not have enough speed
on a single processor to infer gigaflop speeds on an 8 processor multitasking
machine. We must work harder to further optimize the code.

Memory Access Rates in Megawords/sec
Code Segment [| STORM | SQAL06 | SQALO8 [IDEAL
Field
Interpolation = 33.2 44.6 75.8 217
Loop 12
Deposition
Interpolation 15.5 27.4 NA 217
Loop 40

Table 1: Measured access rates for STORM and two versions of SQAL are com-
pared to the theoretical (ideal) rates for a Cray-2. In the field interpolation Loop
12 we read the fields on the grid into temporary arrays which are subsequently
used in the interpolation of field quantities to the particle positions. SQAL06
uses four-way unrolled Fortran for accessing memory. SQALOQS8 improves on this
by employing local memory for the grid indices and Cal-2 assembler to enhance
the loading operations. For the Deposition Interpolation, Loop 40 does both
loads and stores as it accumulates the charge and current densities.

Deposition Interpolations with Interleaving
The STORM code used a vectorized method for depositing charge and cur-

rent densities to the grid from the particle quantities. Since each particle
contributes to eight grid vertices and since there are four fields (p, Jx, Jy, Jz),
there are 32 quantities to be generated. This was accomplished by construct-
ing 32 contiguous arrays, each spanning the entire grid. A gather-scatter
loop was used to fill these arrays with the grid contributions. Since only
one particle was processed at a time, there was no possibility for a conflict.
But there was also no easy way to generalize this method for parallel com-
putation. After all the 32 grid arrays were filled, the actual grid arrays of
(py Jx,Jy,Jz) were constructed by summing these partial arrays.

Somewhat in analogy to the treament of the field interpolation, we
modiifed the code to process the particles in groups of 64. That made it
possible to generate all of the interpolation weights by direct vector mode.
The 32 temporary arrays were interleaved into a larger array in which the
the deposition could proceed into eight contiguous elements at a time. These
8 are the four quantities (p,Jx,Jy,J;) at some grid point followed by the
same four quantities at the adjacent grid point in the z direction. These
“interleaved” temporary arrays were then filled in direct vector mode. As
before, the four primary arrays were constructed by summing over these
temporary arrays.

Particle Code Performance In Unitasking Vector Mode
Code STORM | STORM | SQALO06 | SQAL06 | SQALO8 | SQALO8
Segment psec MFLOPS psec MFLOPS psec MFLOPS
Field
Interpolation 4.8 48 39 59 3.0 76
and Push
Deposition
Interpolation 6.9 14 3.8 26 3.8 26
Boundary
Treatment 10.2 5 3.4 1.5 34 1.5

Table 2: Speed measurements are given for the three essential regions of the
particle codes STORM, SQALO06, and SQALO08. The fourth region, the solve,
is not treated here. We give the performance in terms of the popular yardstick
of micro-seconds per particle per timestep as well as in terms of the measured
speed in mega-flops. The boundary treatment is mostly loads, stores and logic
and with relatively little floating point arithmetic it is difficult to achieve a high
megaflop rate.

In Table 2., in the row labelled Deposition Interpolation, we see that
timings for this phase improved significantly, up 86% from the results of
STORM. The improved speed of 26 MFLOPS is still far too slow to give
the code performance anywhere near a gigaflop, even if we were able to
multitask it at level 8. We are a factor of at least 4 too slow. Again, as
in the revised field interpolation phase, we seem to be limited by the access
rate to the common memory. Referring to Table 1. we see that much of the
improved performance of the Deposition Interpolation may be attributed
to the significantly improved memory access. Even so, it falls far short of

£

the theoretical asymptotic rate, at about the 13 percent level. If we were
to assume that the memory access rate was that given under “IDEAL” in
Table 2, then the speed of this phase would increase to 107 MFLOPS.

It is clear that further modifications must be sought to increase these
speeds. On the Cray-2 we can try to use local memory, we can optimize
with assembly code, or we can seek longer vectors. One can also consider
changing the entire code and data structure to minimize accesses to common
memory. Lastly, there is the option to use a faster computer, such as a Cray

Y-MP.

Using Assembler Code and Local Memory

In measuring the time spent in the different sections of the field interpolation
routine (in SQAL05) we found that roughly 40% of the time is spent in the
performance of the “arithmetical” loops and 60% of the time is used in
reading the fields from common memory. In terms of microseconds per
particle per time step we were using 2.26 to load the fields as compared to
.98 for the interpolation and .66 for the push. It became apparent, that to
make further progress we must optimize the loading of the fields.

Our first approach was to use Fortran optimization techniques. We
unrolled the loop accessing the memory such that it processed four particles
per pass. This version, SQALO6, gave a modest speed-up of this loop of
approximately 9%. To better understand these slow speeds, we turned to
the assembly code. We wanted to analyse the assembly code generated by
the compiler to learn if it was optimal and if not recode the loop either with
better Fortran or in Cal-2 assembly code.

The code generated by the compiler for the inner loop was quite good,
but we discovered a memory bottleneck in the outer loop. A substantial
amount of time was spent loading the locations of the grid cells in scalar
mode. To remove the bottleneck we loaded the grid cell locations into local
memory in vector mode in a separate loop. This netted an additional 41%
speed-up. Although this was done in Fortran, it was based on our reading
of the assembly code generated by the compiler.

In the inner loop, the limiting factor was the short vector length. Since
the Cray-2 supports a memory bandwidth of [vector length] words in [vec-
tor length+8] clock periods, and the field interpolation loop used a vector
length of 12, we were achieving only slightly better than one word every
two clocks. We improved on that rate by loading four of the length 12 vec-
tors into consecutive local memory locations, so the subsequent store into
common memory could be done with a vector length four times greater.
This modification, coded in assembly language, produced a maximum rate
of nearly two words moved every three clocks and resulted in another 20%
speed-up beyond our best Fortran version. Thus overall we have gained a
speedup of 69% in the memory access rate. This can be seen in Table 1 by
comparing the versions SQALO06 with SQALOS8 in the row labeled Field In-
terpolation Loop 12. And compared to STORM, we have more than doubled
the speed of this code segment.

-

We were working on a similar modification for the memory access of

the deposition interpolation, as this paper was going to press. Thus the
notation “NA” in Table 1.

THEORETICAL ESTIMATES

In the foregoing we presented results from our test code SQAL that showed
that the use of interleaving, local memory, direct vectorization, and even
assembler coded memory accesses substantially improved the speed of the
interpolation phases. Yet this was insufficient to attain the speed on a single
Cray-2 processor above 100 megaflops. In what follows we make estimates
of speedups that might be obtained with further code modifications or by
using a Cray Y-MP. .

Critical Path Analysis for Cray-2 and Cray Y-M

By knowing something about the performance of various instructions on
the computer, we can make a best case estimate of how fast different code
segments might run. We have made some simplifying assumptions such as:

. Perfect overlap of adds and multiplies
. One Direct Vector Memory Access per Clock Period
. One Gather Access Every 4 Clock Periods (Cray-2)

. One Path to Memory (Cray-2)

. One Gather Access Every Clock Period (Cray Y-MP)
. Three Paths to Memory (Cray Y-MP)

. One Scatter Access per Clock Period

. Ignore Loop Overhead

© 00 = O O b W N

. Ignore Startup and Memory Bank Conflicts

We have done such an analysis for the field interpolation, the push, and

the deposition interpolation. Also, since the memory performance seems to
be a critical issue for this particle code, we have also made estimates for
the Cray Y-MP which has a slower clock cycle but a much faster memory
in comparison to a Cray-2. Table 3. shows the limiting performance that
could be obtained from STORM or SQAL under these assumptions.

Ordered Particle Scheme

It should be evident from the foregoing that the methods suggested for
optimizing SQAL may not be adequate to bring it to a performance level
near a gigaflop. Even if we assume that we could multitask the code at the
highest level, neither the Cray-2 (with 4 CPU’s) nor the Cray Y-MP (with
8 CPU’s) will reach a gigaflop. However, the Y-MP will operate at a larger
fraction of a gigaflop than the Cray-2. For this reason, we will now restrict
our discussion to the Cray Y-MP.

-v

Theoretical Asymptotic Best Case Speeds (MFLOPS)
Code STORM | SQAL STORM SQAL
Segment (Cray -2) | (Cray-2) | (Cray Y-MP) | (Cray Y-MP)
Field Interpolation 180 215 286 271
and Push (1.16) | (1.06) (.74) (.53)
Deposition 133 191 259 207
Interpolation (1.03) (.83) (.53) (.76)
Combined 157 204 277 241
Phases (2.19) (1.89) (1.27) (1.60)

Table 3: Speed estimates are given for the Cray-2 and for the Cray Y-MP
under extremely optimistic assumptions. The numbers in parenthesis give the
execution times in micro-seconds per particle. It is evident that the Cray Y-MP
outperforms the Cray-2 inspite of its slower clock cycle. When combined with
the multitasking potential of these machines, the Y-MP would appear to be the
machine to use to obtain performance in the gigaflop range.

Also there is a serious problem when we consider how a code such as
SQAL could be multitasked. The field interpolation, the push, and the solve
are trivially multitasked because there is no data conflict. Unfortunately,
there is a conflict in the deposition interpolation that must be resolved
inorder to multitask that phase of the calculation. The problem is that two
different processors may try to update the same grid points at the same
time.

One approach to this problem recognizes that the errors generated by
forcing the deposition interpolation to multitask are relatively small and
therefore acceptable. Such an “asynchronous” version would generate ir-
reproducible results which is less than satisfactory even if the errors are
small.

The other approach uses a particle sorting scheme to eliminate any
possible conflicts of multitasking. The idea here is to order the particles
such they are grouped together according to the grid cell they occupy. When
grouped this way, great economies result because the number of memory
accesses required goes down dramatically. It also becomes advantageous to
store portions of fields in local memory when they are reused many times.
In this scheme they would be accessed as many times as there are particles
in the cell being processed. We shall describe an algorithm that rebuilds the
particle tables after each push in such a way that less than 4n operations
are required to ensure that the n particles are properly sorted into their
grid cells.

SQAL and STORM both carry the particle variables ip, jp, and kp
in the particle tables; these indices specify the coordinates of the grid cell
containing the particle. It is convenient to also carry the offset index

ic(n) = ip(n) + im * (jp(n) — 1) + im * jm * (kp(n) — 1)

where im and jm are the grid dimesnions in the z and y coordinates. The

quantities ip, 7p, kp and ic are computed as the last part of the push phase.
By keeping the old value of ic as icold we can test (ic—icold) to immeadiately
determine which particles have been pushed out of their former cells and
which ones have been retained in them. Just after the push we reconstruct
the particle tables to keep them ordered with respect to the grid cells. This
can be done as follows:

1. Construct a transit table of particles departing cells
Sort the transit table ordering particles by cells
Construct transit pointers to old particle table
Construct retained pointers to old particle table

Allocate a new particle table

IR A S o

Process the grid cells in ascending order and for each cell:

e Move the particle data of retained particles to new table

e Move the particle data of departing particles to new table

As we envisage this method, we will not move the particle data until we
have determined the mapping of the old “serial” numbers into the new ones.
For nm particles, constructing the transit table will require nm integer adds
as well as a few times nm logical operations. Of the nm particles only a
fraction (perhaps 10%) will be departing particles. Say there are { of these.
The sort will require on the order of [In ! operations of the integer arithmetic
and logical varieties. There will be many fewer transit and retained pointers
than particles, perhaps on the order of 20% of the number of particles. Once
the pointers are set, moving the particle data requires 2 * nq * nm memory
accesses. Here, ng is the number of attributes per particle- envisaged as 12
at least.

A great deal is gained by using these sorted particles. Instead of ac-
cessing each field grid quantity 8 times for every particle, this work can be
reduced to 4 times for every cell. If there are 10 particles per cell, this im-
plies a 20 fold reduction in memory accesses in the field interpolation phase.
A similar reduction occurs in the deposition interpolation because the accu-
mulating grid quantities are kept in vector registers until all particles in a
cell have contributed. Not only does the time spent doing memory accesses

decrease, but some of the arithmetic can be further optimized by keeping

frequently reused field quantities in the local memory or registers.

It is the cost of the sorting and the mapping from the old particle table
to the new one that partly offsets these gains. These costs are minimized by
sorting only the departing particles and by the fact that the particle table
data is not moved until pointers to the new particle table are determined.

LAY

Autotasking Implementation Issues

We mentioned above that the SQAL code could not be multitasked unless
we were willing to use the so-called asynchronous mode. A code employing
the just described sort procedure, however, can be easily multitasked by
using autotasking. As in the earlier discussion, the deposition interpolation
is the only phase that is not trivial to multitask. Here we partition the
physical domain into as many subdomains as we have processors. Each
sub-domain will have its own sub-table of particles. The only difficulty is
that some particles cross the subdomain boundaries in the push. When
this occurs, these particles and their attributes must be moved into other
sub-tables in such a way that the ordering is preserved. This can be done
by isolating from the table of departing particles those that have crossed
into other subdomains. The pointers of these isolated particles are then
passed to the tasks relevant to their new sub-domains. The number of such
particles is quite small, down by a “surface to volume” ratio as compared to
the already modest number of departing particles. Implicit in what we have
said here is the fact that the sorting procedure itself is multitaskable since
both the particle tables and the grid subdomains are partitioned among the
several processors.

RESULTS AND CONCLUSIONS

We have obtained a signifcant improvement in the performance of the
STORM code by making several modifications as evidenced in the sequence
of SQAL codes. The code was restructured by interleaving both the field
arrays on the grid and the particle tables; the interleaving allowed us to use
direct vertorization in the place of gather-scatter constructs used in portions
of STORM. Careful attention to the assembly code allowed us to improve
the Fortran versions of SQAL and later to use some assembly code in the
slowest code regions. Although we succeeded in doubling the speed of the
three code regions we addressed, we are still short of demonstrating gigaflop
speeds in the Cray-2 environment.

The picture is more optimistic if we consider the Cray Y-MP. From
our critical path analysis a top speed of 241 Mflops per processor is the
theoretical machine speed limit. If we could multitask this at level 8 we
could have a top speed of 1.93 gigaflops. This is a big “if” because we have
shown that the deposition interpolation cannot be multitasked unless one is
willing to accept the slightly wrong answers that come from an asynchronous
method.

We believe that a further restructuring of the code to use ordered par-
ticles will lead not only to better single processor performance, but to a
fully multitaskable code as well. This should give us about one gigaflop
performance on the Cray Y-MP. Even better news is that this version with
ordered particles is naturally extendable to more massively parallel MIMD
machines, whether built by Cray Research or others- particularly if the

processors are vector processing units.

Acknowledgements

We thank Bruce Cohen, Alex Friedman, Dennis Hewett, and Alan Mankof-
sky for valuable advice on the many questions that arose in these stud-
ies. This work was supported by the U.S. Department of Energy for the
Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
Cray-1 is a registered trademark and Cray-2, Cray X-MP, and Cray Y-MP
are trademarks of Cray Research, Inc.

References

(1] A. Bruce Langdon and D. C. Barnes, “Direct Implicit Plasma
Simulation,” in “Multiple Time Scales,” Eds. Brackbill and Co-
hen, Acadmeic Press (1985), 337

[2] R. J. Mason, J. Comput. Phys. 41 (1981), 233

(3] A. Friedman, A. B. Langdon and B. I. Cohen, Comments Plasma
Phys. Controlled Fusion 6 (1981), 225

[4] O. Buneman, C.W. Barnes, J.C. Green, D.E. Nielsen, J. Com-
put. Phys. 38 (1980), 1-44

[6) Eric J. Horowitz, Dan E. Shumaker and David V. Anderson, J.
Comput. Phys. 84 (1989), 279-310

[6] E. J. Horowitz, J. Comput. Phys. 68 (1987), 56
(7] A. Heron and J. C. Adam, J. Comput. Phys. 85 (1989), 284,301

